Indécomposabilité de la loi de Poisson

Geoffrey Deperle

Leçons associées:

- 243 : Séries entières, propriétés de la somme. Exemples et applications.
- 245: Fonctions d'une variable complexe. Exemples et applications.
- 261: Loi d'une variable aléatoire: caractérisations, exemples, applications.
- 264 : Variables aléatoires discrètes. Exemples et applications.
- 266 : Illustration de la notion d'indépendance.

Le but de ce développement est de montrer le théorème suivant :

Théorème. Soit Z une variable aléatoire suivant une loi de poisson de paramètre $\lambda > 0$ et soient X et Y deux variables indépendantes à valeurs dans $\mathbb N$ telles que Z=X+Y alors X et Y suivent des loi de Poisson.

Preuve: Soit G_Z , (resp. G_X , G_Y) la série génératrice de Z (resp. X, Y). On a par indépendance de X et Y, la décomposition $\forall |z| < 1, G_Z(z) = G_X(z)G_Y(z)$. On a pour tout $s \in \mathbb{C}$,

$$G_Z(s) = \sum_{n=0}^{+\infty} \mathbb{P}(Z=n)s^n$$

$$= \sum_{n=0}^{+\infty} e^{-\lambda} \frac{\lambda^n}{n!} s^n = e^{-\lambda} \sum_{n=0}^{+\infty} \frac{(\lambda s)^n}{n!} = e^{\lambda(s-1)}$$

Nous allons identifions la loi de X et Y en identifiant les fonctions génératrices G_X et G_Y .

Étape 1 : Montrons qu'il existe F, G des fonctions entières tel que $G_X = e^F$ et $G_Y = e^G$.

 G_X et G_Y se développement en série entière à coefficients positifs.

On a par indépendance de X et Y, $\forall n \in \mathbb{N}$, $\mathbb{P}(X=n)\mathbb{P}(Y=0) \leq \mathbb{P}(Z=n) = e^{-\lambda} \frac{\lambda^n}{n!}$ avec de plus $\mathbb{P}(X=0)\mathbb{P}(Y=0) = \mathbb{P}(Z=0) \neq 0$, donc $\mathbb{P}(Y=0) \neq 0$ donc $\mathbb{P}(X=n) \leq \frac{e^{-\lambda}}{\mathbb{P}(Y=0)} \frac{\lambda^n}{n!}$.

$$\mathbb{P}(X=0)\mathbb{P}(Y=0) = \mathbb{P}(Z=0) \neq 0, \text{ donc } \mathbb{P}(Y=0) \neq 0 \text{ donc } \mathbb{P}(X=n) \leq \frac{\sigma}{\mathbb{P}(Y=0)} \frac{\kappa}{n!}.$$

Donc, par comparaison, G_X (et de même G_Y) est somme de série entière de rayon de convergence infini.

Par le principe du prolongement analytique, l'identité valable pour $|z| \leq 1$, se prolonge sur \mathbb{C} :

$$\forall z \in \mathbb{C}, G_X(z)G_Y(z) = e^{\lambda(z-1)}$$

Ainsi, G_X et G_Y ne s'annulent pas, donc il existe F, G analytique sur \mathbb{C} tel que $\begin{cases} G_X = e^F \\ G_Y = e^G \end{cases}$.

Étape 2 : Identifions F et G.

Si $|z|=r\geq 1$, alors $|G_X(z)|\leq G_X(|z|)=G_X(r)$ car les coefficients de la série entière définissant G_X sont positifs.

De plus,
$$\mathbb{P}(Y=0)G_X(r) \leq G_X(r)G_Y(r) = e^{\lambda(r-1)}$$
.
Donc, $|G_X(z)| = \underbrace{|\exp(F(z))|}_{=\exp(\operatorname{Re}(F(z)))} \leq Ce^{\lambda(r-1)}$ avec $C = \frac{G_Y(r)}{\mathbb{P}(Y=0)}$.

Donc, $\operatorname{Re}(F(z)) \leq \ln C + \lambda(|z| - 1)$.

Afin de conclure, nous allons utiliser le lemme suivant.

Lemme 1. Soit f = u + iv, $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ une fonction entière, alors si $A(r) = \sup_{|z|=r} \operatorname{Re} f(z)$,

1.
$$\forall n \ge 1, r > 0, |a_n| \le 2 \frac{A(r) - u(0)}{r^n}$$

2. Si $d \ge 0$ et $A(r) = O(r^d)$ alors f est une fonction polynomiale de degré $\le d$.

Preuve : Soit r > 0, la série $\theta \mapsto \sum_{n=0}^{+\infty} a_n r^n e^{in\theta}$ converge uniformément vers $\theta \mapsto f(re^{i\theta})$ donc

$$\begin{cases} a_n r^n = \frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) e^{-in\theta} d\theta & L_1 \\ 0 = \frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) e^{in\theta} d\theta & L_2 \end{cases}$$
. Donc en effectuant $L_1 + \overline{L_2}$, on a

$$a_n r^n = \frac{1}{\pi} \int_0^{2\pi} u(re^{i\theta}) e^{-in\theta} d\theta$$
$$= \frac{1}{\pi} \int_0^{2\pi} (u(re^{i\theta}) - A(r)) e^{-in\theta} d\theta + \underbrace{\frac{1}{\pi} \int_0^{2\pi} A(r) e^{-in\theta} d\theta}_{=0}$$

D'où $|a_n r^n| = |a_n| r^n \le \frac{1}{\pi} \int_0^{2\pi} (A(r) - u(re^{i\theta})) d\theta.$

Or, $a_0 r^0 = \frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) d\theta = f(0) \text{ donc } u(0) = \frac{1}{2\pi} \int_0^{2\pi} u(re^{i\theta}) d\theta \text{ d'où l'inégalité } |a_n| \le 2\frac{A(r) - u(0)}{r^n}.$

De plus, si $A(r) = O(r^d)$, alors en passant à la limite $n \to +\infty$ dans l'inégalité, on a $a_n = 0$ pour n > d donc f est une fonction polynomiale de degré $\leq d$.

Le lemme s'applique à la fonction F et d=1, F est donc de la forme $F(z)=\alpha z+a$. Or, $G_X(1) = 1$ donc $e^{\alpha}e^{a} = 1$ donc $G_X(z) = e^{\alpha(z-1)}$.

Comme
$$G_X'(z) = \alpha e^{\alpha(z-1)}$$
, on a $G_X'(1) = \alpha$. Comme $G_X'(1) = \sum_{n=0}^{+\infty} n \mathbb{P}(X=n) \ge 1$, on a $\alpha \in \mathbb{R}^+$.

Donc $X \sim \mathcal{P}(\alpha)$.

De même, Y suit une loi de Poisson de paramètre $\beta \in \mathbb{R}^+$ tel que $\alpha + \beta = \lambda$.

Références

Hervé Queffélec et Martine Queffélec. Analyse complexe et applications. Calvage Mounet, 2017.